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Abstract

The paper considers a problem of random vibrations of swings—a pendulum with variable length. The goal of the paper

is to estimate mean response energy of the system, subjected to external Gaussian white noise. The Energy Balance method

is used to derive analytical results.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The paper considers a stochastic analysis of a pendulum with instantaneous, stepwise variations of its
length, subjected to an external random excitation. This system is also known as swings and it may be regarded
as a strongly nonlinear one. Analysis of this system cannot be performed by known stochastic averaging
procedures since certain conditions for their implementation are violated [1,2]. On the other hand, stochastic
analysis may be conducted by the Energy Balance method [3] developed for piecewise-conservative systems [3].
The method, basically, separates the system’s motion into two parts: a motion between switches and energy
losses due to switches. This procedure results in mean value of the system response energy as a function of a
time interval between two consecutive switches—mean quarter period of the system. This formula is exact and
therefore does not require small changes of response energy within a period.
2. Analytical analysis

Consider a mathematical pendulum with variable length subjected to standard, zero mean Gaussian white
noise:

d

dt
ðL2 _fÞ þ O2Lf ¼ xðtÞ; 0ptpT ,

L ¼ ð1þ R signðf _fÞÞ; O2 ¼ g=L0; 0oRo1,
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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hxðtÞ; xðtþ tÞi ¼ DdðtÞ. (1)

where D is noise intensity. Similar system with random excitation applied to the pendulum’s suspension point
has been analyzed in Ref. [4]. It has been shown that such length variations lead to energy losses in Eq. (1) with
no noise. The Energy Balance has been used in Ref. [4] to obtain an analytical expression for mean system
response energy, which proved to be more accurate than its asymptotic expression for limiting case of R! 0.

Introducing a new variable p one may rewrite Eq. (1) and its energy between switches as

_f ¼
p

ð1þ R signðfpÞÞ2
; _p ¼ �O2ð1þ R signðfpÞÞfþ xðtÞ,

H ¼
1

2

p2

ð1þ R signðfpÞÞ2
þ O2ð1þ R signðfpÞÞf

� �
,

_H ¼
px

ð1þ R signðfpÞÞ2
. (2)

The later expression should be understood in the Stratonovich sense. To evaluate its mean, one has to add the
Wong-Zakai correction term, so that a value of mean energy between two consecutive switches is

_H ¼
D=2

ð1þ R signðfpÞÞ2
; HðtÞ ¼

Dt=2

ð1þ R signðfpÞÞ2
þHð0Þ. (3)

Expression (3) indicates that energy between switches grows linearly in time. It is important to stress that the
influence of noise intensity is also different—it is large when f and p have different sign and smaller otherwise.

Assume, without loss of generality, that a motion of the system at the current cycle starts to the right from
the system’s equilibrium position, so that f40 and p40. Then the energy evolution between switches is (the
bar over mean energy is skipped for brevity):

Hðt1=4 � 0Þ ¼
Dt1=4þ=2

L2
þ

þHð0Þ,

Hðt1=2 � 0Þ ¼
Dt1=4�=2

L2
�

þHðt1=4 þ 0Þ; L� ¼ ð1� RÞ. ð4Þ

where t1=4� is random time between two consecutive switches, with the sign corresponding to that in front of
R, Hðt1=4 � 0Þ and Hðt1=2 � 0Þ values of energy just before switches after the first and second quarter periods
and Hðt1=4 þ 0Þ is a value of energy right after the first switch. Next, let us evaluate energy losses due to
switches. At the maximum system’s displacement its velocity is zero and therefore from Eq. (3) one obtains

Hðt1=4 þ 0Þ ¼ Hðt1=4 � 0Þ
L�

Lþ
. (5)

At the system’s equilibrium position, system’s displacement is zero and according to the conservation of
angular momentum law the energy losses are:

Hðt1=2 þ 0Þ ¼ Hðt1=2 � 0Þ
L2
�

L2
þ

. (6)

Combining expressions (6), (5) and (4), applying unconditional averaging and imposing the condition of
stationary response, i.e., hHðt1=2 þ 0Þi ¼ hHð0Þi results in

hHð0Þi ¼
Lþ

L3
þ � L3

�

L3
�

L3
þ

DT1=4þ

2
þ

DT1=4�

2

 !
, (7)

where T ¼ hti mean time between switches. Assuming that the value of mean quarter periods of systems (1)
are equal to

T1=4� ¼ ðp=2OÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� R
p

, (8)
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expression (7) may be simplified to

hHð0Þi ¼ s2
Lþ=2

1þ R2=3

L3
�

L3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ RÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� RÞ

p !
,

s2 ¼
Dp

12OR
. ð9Þ

It should be noted that the same value of s2 has been obtained in Ref. [4]. To obtain the overall value of the
response energy let us average expression (3) within the half a period:

hHi ¼
1

T

Z T

0

HðtÞdt

¼ hHð0Þi
T1=4þ

T1=2
þH1

T1=4�

T1=2
þ

D

4T1=2

T2
1=4þ

L2
þ

þ
T2

1=4�

L2
�

 !
, ð10Þ

H1 ¼ s2g
L�=2

1þ R2=3
; g ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ R
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� R
p

.

In the case of assumption (8) expression (10) simplified to

hHi ¼ s2CðRÞ,

CðRÞ ¼
ð1� R2Þ

3=2
þ ð3R2 þ 1Þ

gð1þ R2=3Þð1� R2Þ
, (11)

so that in the limiting case of small R:

lim
R!0

CðRÞ ! 1; hHi � s2. (12)

Unfortunately expression (11) seems to provide wrong estimates, going to infinity, for R approaching unity.
On the other hand, asymptotic result (12) should provide accurate estimations for small values of R.

3. Discussion of results

In Fig. 1 results of Monte-Carlo (MC) simulation are compared with asymptotic result (12). It is seen that
the results of numerical simulation agree very well with asymptotic analytical expression even for large values
of R. Therefore, contrary to the case considered in Ref. [4], where the asymptotic value was less accurate than
that obtained by the Energy Balance method, here the asymptotic result proved to be very accurate within the
Fig. 1. Mean response energy vs. R for D ¼ 1 calculated analytically (Eq. (12)) ‘o’ and numerically (MC) ‘—’.
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whole range of R values and even large values of noise intensity D. Concluding, it must be emphasized that
mean response energy behavior is well described by expression (12).
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